On the numerical evaluation of the singular integrals of scattering theory

نویسندگان

  • James Bremer
  • Zydrunas Gimbutas
چکیده

In a previous work, the authors introduced a scheme for the numerical evaluation of the singular integrals which arise in the discretization of certain weakly singular integral operators of acoustic and electromagnetic scattering. That scheme is designed to achieve high-order algebraic convergence and high-accuracy when applied to operators given on smoothly parameterized surfaces. This paper generalizes the approach to a wider class of integral operators including many defined via the Cauchy principal value. Operators of this type frequently occur in the course of solving scattering problems involving boundary conditions on tangential derivatives. The resulting scheme achieves high-order algebraic convergence and approximately 12 digits of accuracy. One of the principal observations of integral operator theory is that certain linear elliptic boundary value problems can be reformulated as systems of integral equations whose constituent operators act on spaces of square integrable functions [7, 20]. This observation plays a particularly important role in scattering theory, where such reformulations are standard [14, 11, 15, 13, 12, 7, 8]. Not surprisingly, it also figures prominently in the numerical treatment of scattering problems [16, 17, 1, 10]. But while the integral equation approach to scattering theory is a venerable and well-developed subject, the corresponding numerical analysis — that is, the study of the integral equations of scattering theory using computers and finite precision arithmetic — is rather newer and considerably less developed. As a result, many fundamental problems in numerical scattering theory are as yet unresolved. Examples of this phenomenon can be found in recent contributions like [9] and [2], which offer new integral formulations of certain boundary value problems for Maxwell’s equations that, unlike classical formulations, are amenable to numerical treatment. This article concerns another unresolved problem: the evaluation of the singular integrals of scattering theory. A key difficulty in the discretization of those integral operators which arise from the reformulation of linear elliptic boundary value problems is the efficient and accurate evaluation of integrals of the form

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

A General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts

In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...

متن کامل

Bending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method

This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...

متن کامل

TWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND

In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...

متن کامل

The Evaluation Of early Singular Integrals In The Direct Regularized Boundary Element Method

The numerical analysis of boundary layer effect is one of the major concerned problems in boundary element method (BEM). The accuracy of this problem depends on the precision of the evaluation of the nearly singular integrals. In the boundary element analysis with direct formulation, the hyper-singular integral will arise from the potential derivative boundary integral equations (BIEs). Thus th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 251  شماره 

صفحات  -

تاریخ انتشار 2013